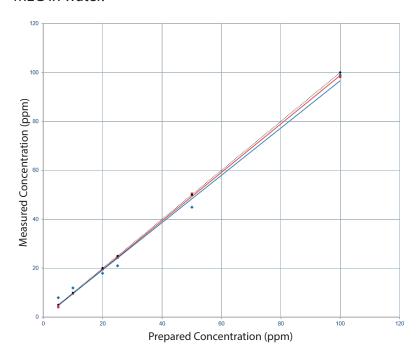
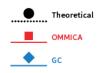


Correlation of OMMICA™ with Gas Chromatography for monoethylene glycol (MEG)


The OMMICA™ method for measuring monoethylene glycol (MEG) in water was compared to gas chromatography (GC) by a third party laboratory, Intertek Australia. The results demonstrate the accuracy of OMMICA™, providing clients with confidence to adopt the method for their operations.

TESTING


Samples of water containing concentrations of between 0 and 100 ppm MEG were prepared. These samples were then split into two aliquots and analysed using OMMICA™ and GC in parallel, in the same lab, to minimise any potential differences. Each sample was tested in duplicate to reduce the likelihood of anomalous results.

RESULTS

The graph below shows that results obtained using OMMICA™ correlate very closely with the results obtained using GC. Both methods give results very close to the prepared spiked concentrations of MEG in water.

MEG ppm / Theoretical	ОММІСА	GC
5	4.1	8
10	9.7	12
20	19.6	18
25	24.3	21
50	50.5	45
100	98.2	99

USER BENEFITS

OMMICA™ testing requires no lengthy calibration or set up, multiple tests can be undertaken and results are produced in under 1 hour. OMMICA™ can also be used on-site, on or offshore. With a lower CAPEX and OPEX than GC, and proven, accurate results, clients can feel confident in their choice of OMMICA™ for MEG in water analysis, whether as a supplementary method to GC or as a standalone analysis tool.

